The Net-zero Steel Pathway Methodology Project

How to measure and track emissions from steel production

October 2022

Edward Heath-Whyte, BSc(Hons), CEnv, MIEMA, MIET
Head of Environment and Sustainability
Liberty Steel UK
‘Difficult to Abate’

- 7-8% of Global CO$_2$ Emissions
- Carbon intensive
- High capital cost
- Long investment cycle
- Low average asset age
Steel Summary

Steel benefits from promising technological pathways, but more decisive action is required to boost demand and investments in green steel.

Key messages

- Low-emission production technologies are increasingly available but far from commercially competitive to be deployed at scale.

- The cost of transforming steel assets is dwarfed by the cost of infrastructure needed – a significant bottleneck risk exists.

- The green premium for end consumers is low, but steel buyers need to be incentivized to generate demand for producers.

- Further decisive policy action can incentivize steel players into low-emission production.

- Further de-risking and better returns will be needed to reorient larger investment flow towards the low-emission industry.

Technology

Readiness stage 2

- The low-emission production technologies are largely prototyped at scale.

- +25-50% Production cost increase for low-emission production today.

- $1,750 billion Investments required in low-emission power generation

- $222-586 billion Investments required in low-emission hydrogen production

- $35-109 billion Investments required in CO₂ transport and storage

Infrastructure

Readiness stage 1

- The necessary infrastructure required by the low-emission industry needs to be developed almost entirely.

- +25-50% Expected green premium for steel buyers

- +0.5-1% Expected green premium for end consumers

Demand

Readiness stage 4

- Most of the market can pay the required green premium.

Policies

Readiness stage 1

- Very limited policies complement current environment (technology, infrastructure, demand, capital), to support growth of the low-emission industry.

- $180-360/tCO₂e Carbon price equivalent required to level competitive landscape

- $300 billion CapEx required to transform industry asset base by 2050 (-$10 billion/year)

The Net-Zero Steel Pathway Methodology Project
The Net-Zero Steel Pathway Methodology Project overview

• Project aims:
 • To enable the steel sector to support the achievement of the Paris objectives through a credible, well informed sectoral decarbonisation approach
 • To resolve the challenges by defining what is expected from a steelmaker to make a realistic and credible commitment to the Paris Agreement, with a net zero or 'science-based target’

Project background, presentations and draft recommendations available at:
https://www.netzerosteelpathwayproject.com/
Steering Group

- ArcelorMittal
- BlueScope Steel
- Tata Steel
- GFG Alliance

Supported By

- World Steel Association
- ResponsibleSteel

Technical Working Group Members

- Celsa Group
- JSW
- Liberty Steel / Infrabuild
- Nippon Steel
- NLMK
- Outokumpu
- POSCO
- Severstal
- Tenaris
- Ternium
- Voestalpine
- Wirtschaftsvereinigung Stahl
• ACT Developed a Methodology to measure Steel Sector Decarbonisation with a defined value chain. March 2021 (Road-test)
• The NZSPMP kicked off the debate on how to develop a common methodology to measure the decarbonisation of the Steel Sector (7% Global GHG emissions) July 2021
• SBTi Development of a method for measuring the achievement of a 1.5°C Aligned decarbonisation pathway for the Steel Sector. Ongoing
• NZSI Steel Transition Strategy a 2 scenario 1.5°C aligned strategy for Steel Sector Decarbonisation. September 2022
• Responsible Steel Standard V2 September 2022
• UNIDDI – partial sector coverage
Steel system SBT = refers to targets incorporating scope 1+2 emissions of crude steel production, as well as the scope 3 emissions relative to raw material preparation and iron making production (steel input production).

Value chain

Core steel system boundary

Variable steel company boundary

Value chain

FIGURE 10: BOUNDARIES FOR THE IRON AND STEEL SECTOR
SBTi – Key recommendation 1 SDA Proposed Boundary *

- Boundary changes
 - Exclude secondary metallurgy (IEA Scrap curve issue)
 - Include Hot Rolling
 - *Still under development
Use of Scrap Curve (Sliding Scale)

Figure 3.7 Emissions intensity ranges for near zero and low emission steel and cement production

- The Scrap sliding scale is used in several methodologies.
- However, it is not always used as intended - It is not suitable for use at a product level. (UNIDDI)
- It is only suitable for normal carbon steel production, not for engineering steels, High Alloy Steels or Stainless Steels.
Figure 3.1 Analytical boundary for defining near zero emission steel production

This Boundary should be noted as it does not include Semi Finishing or Hot Rolling.

IEA (2022), Achieving Net Zero Heavy Industry Sectors in G7 Members, IEA, Paris
https://www.iea.org/reports/achieving-net-zero-heavy-industry-sectors-in-g7-members

Notes: “Other materials production” refers to the production of material inputs to the iron and steel sector besides iron ore and limestone, including electrodes, alloying elements and refractory linings.
Liberty Steel – Decarbonisation @ Ostrava

NOW
Integrated Route
Production: 2.6 Mt
CO₂ Emissions: 2.4 t CO₂/tls

IRON MAKING

STEEL MAKING

DOWNSHARE FACILITY

RENEWABLE ENERGY

STEP 1
Hybrid Furnaces with 40% Scrap: 60% HM Route
Production: 2.8 Mt
CO₂ Emissions: 1.19 t CO₂/tls

RAW MATERIAL

Sinter Plant
North and South

Coking Plant
COB 1&2 and COB11

2 Blast Furnaces

1 Blast Furnace

New 400 kV Line

Scrap yard extension & processing units

HBI / DRI will be sourced from the market.

2 Hybrid Furnaces (100% Scrap or 60-70% Scrap & 30-40% HBI/DRI)

STEP 2
Hybrid Furnaces with 100% Scrap or 60-70% scrap
30-40% HBI/DRI
Production: 3.2 Mt
CO₂ Emissions: 0.3 t CO₂/tls

All reheating furnaces except Stackel Mill will be charged with multi-fuel burners to adapt to natural gas as transition fuel to H₂ Energy optimisation and automation.

Reheating furnaces to be fuelled with H₂

H₂ & SOLAR & WIND PLANTS

BOF GAS

NG

BLUE / GREEN H₂ SUPPLIES
The Steel Sector Boundary is Key for a consistent methodology that can compare company progress towards a 1.5°C 2050 de-carbonization pathway.

The Scrap Sliding-Scale/Curve is an appropriate method of defining Near-Zero and low emission steel production. However currently it has limitations:

- It is based on the boundary defined by the IEA.
- It is suitable for company and plant level use but not for products.
- It is not suitable for Stainless Steel or High Alloy Steels.

Summary
• To measure de-carbonization of the Steel Sector methodologies have been developed that can provide a consistent measurement.

• The boundary must be recognized when setting targets (the measurement of downstream processing must also be included).

• The Scrap Sliding-Scale/curve should be used for the boundary it was based on. If the boundary is different than the sliding-scale/curve will need to be adjusted to include any extra emissions.

• Convergence in Methodologies will be critical to ensure progress to a 1.5°C Compatible Net-Zero pathway is transparent and comparable.
QUESTIONS?
USEFUL WEBSITES

- GFG Alliance
- NZSPMP
- ACT Methodologies
- worldsteel

- Responsible Steel
- SBT – Steel Sector Guidance
- ETC – Net-Zero Steel STS
- IEA – I&S technology Roadmap