PERSPECTIVES FOR STEEL IN THE MOBILITY SECTOR

Ingo Olschewski
Future Mobility is technologically driven by decarbonization and (automated) Mobility as a Service (aMaaS)
Decarbonization in the mobility sector is substantiated by very concrete and enforceable use-phase targets

- Globally the strictest targets for newly registered vehicles
 - Target enacted for 2025
 - Requiring ca. 28% CO₂ reduction compared to 2020
 - 100% reduction until 2035 ➔ complete sales ban for petrol and diesel cars!

- Tightened targets under Biden administration until 2026
 - Target enacted for 2030
 - Requiring ca. 32% CO₂ reduction compared to 2016

- Commitment to decarbonization paths to mitigate climate change does not only include drivetrain electrification, but also a complete re-thinking of mobility including electrified, shared and automated vehicle fleets.
All global regions advance in AV legislation: EU enables homologation of aMaaS vehicles, whereas US liberalizes fleet testing. China does both.

<table>
<thead>
<tr>
<th>EU</th>
<th>US</th>
<th>China</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany has become the first country in the world to generally allow autonomous vehicles onto public roads without requiring a human backup safety driver.</td>
<td>However, hotspot for testing activities in California</td>
<td>Proposed Amendments of the Road Traffic Safety Law clarify the requirements for AV functions and liabilities: First AV specific proposals</td>
</tr>
<tr>
<td>Elsewhere only decisions on case-by-case basis</td>
<td>48 permit holders for testing with a driver / 7 permit holders for driverless testing / 3 permit holders for deployment of AV services.</td>
<td>Regional legislations and initiatives as forerunners, e.g. in Shenzhen, Beijing as fast follower</td>
</tr>
</tbody>
</table>

» After lagging behind for some time, legislative obstacles for aMaaS are removed step-by-step
Market roll-out progresses gradually, reaching breakthrough by offering public 24/7 commercial services without safety driver in 2023

» **Didi** offering public services incl. safety driver since June 2020 in outskirts of Shanghai

» **Waymo** offering driverless offering public services since March 2022 in San Francisco

» **Cruise** has started a completely autonomous service in San Francisco in late 2022

> **AV in FMP fleets in selected areas (on-board supervised)**

> **AV testing on public roads (on-board supervised)**

> **Unlimited commercial FMP fleets in selected areas**

> **AutoX** offering completely autonomous public services on 1000m² area in Shenzhen, China without safety driver in Jan. 2022.

> **In August 2023, Waymo received unlimited allowance for AV service deployment in San Francisco**
Hotspot metropolitan areas are the nucleus for realization of further industry plans

Whereas current AV fleet sizes include 200 – 1000 vehicles per city nowadays, business plans of future mobility providers include an exponential growth of relevant business figures (passengers, mileage, revenue).
Accordingly, the industry gradually converges from conversion to purpose design to better meet requirements of large fleet operations.

<table>
<thead>
<tr>
<th>Current:</th>
<th>Jaguar I-Pace</th>
<th>Chevy Bolt</th>
<th>Hongqi E-HS3</th>
<th>Toyota RAV4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on series production vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensors, cameras and computers bolted on</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Future:</th>
<th>Waymo Zeekr</th>
<th>Cruise Origin</th>
<th>Baidu Apollo RT6</th>
<th>(not named)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom designed vehicles for ride-hailing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without steering wheel and pedals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameras and sensors integrated into the chassis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special features (more seating, four-wheel steering, communication with light and sound)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
However, AV services sometimes face the harsh and imperfect reality...

Recent incidents including vehicle crashes demonstrate the necessity of further improvements

- in **artificial intelligence and sensor technology**
- in vehicle **passive safety characteristics**

Further challenges for mass market applicability persist

- in **cost reduction and scalability**
- in **use case adaptability**
Passive safety is highly demanded, however not explicitly addressed by most FMP. Steel e-Motive can fill this gap.

- **Recent incidents demonstrate** the relevance for passive safety
- Extremely relevant for new vehicle concepts due to **small front / rear overhangs**
- **Passive safety starts getting some attention** at Future Mobility Providers, as safety perception of passengers is crucial for business success
- **Zoox** actively **communicates passive safety** as a challenge, however remains vague regarding test settings and parameters

Transparent concepts in Steel e-Motive
how to **deal with**
- Short overhangs
- New door concepts
- Battery safety
Scalable architectures to bring down costs and enable use case specific mobility solutions, as demonstrated in Steel E-Motive

Future mobility concepts

Vehicle architecture

Vehicle platforms

1. Scope
 » Definition of platform coverage

2. Module definition
 » Specification of modules and interfaces

3. Scalability
 » Range of feasible characteristics
 » E.g. battery capacity, HW performance

4. Upgradeability
 » Replacement / extension during life cycle
 » E.g. battery technology, AD sensors

General platform characteristics

Image Sources: Hyundai, Audi, Volkswagen
Use-case adaptability is key, as future automated mobility services will cover a variety of people and goods transportation services.

Status-quo MaaS
- **Single-used MaaS**
 - **Car sharing**
 - Usually 1-2 passengers
 - Urban & suburban area
 - Short-term usage
 - **Ride hailing**
 - **Future AMaaS**

Pooled MaaS
- **Ride sharing**
 - > 5 passengers
 - Urban or restricted area
 - Regular usage
- **Shuttle service**

Potential use-cases
- **Basic comfort**
- **Premium comfort**
- **Productivity**
- **Basic mobility**
- **Premium mobility**
- **Specific purposes**
Based on the reality check of aMaaS and the challenges identified, some important implications for steel can be derived.

» **In principle, steel has very beneficial characteristics** for the application in both conventional vehicles as well as in new (automated) vehicle concepts: Costs, safety, sustainability etc.
 - However, the messages have to be conveyed to the **right addressees**: *Future Mobility Providers* will be the *pacemakers of the future* in automated and shared mobility services.

» Especially **innovative vehicle concepts** may create a *market-pull for high-performance steel grades*, to fully exploit the *design space*, e.g. regarding *short vehicle overhangs*.
 - Development should be *supported* with an *active ‚technology push‘* by the steel industry.

» This may **compensate for the slight decrease** of *total steel quantities* due to the decreasing private car market.
 - **However**, until now, *future mobility concepts* are still more associated with aluminum than with steel. Active communication of benefits required.
THANK YOU FOR YOUR ATTENTION