

WSA - BREAKTHROUGH TECHNOLOGY CONFERENCE

DECEMBER 5-6, ABU DHABI

GREEN STEEL IN MOTION – IRON FEEDSTOCK MEETS RENEWABLE ENERGY

Dr. Alexander Fleischanderl

Challenge & Opportunity

Why this is a make-or-break decade

- <u>71% of blast furnaces will require major</u> <u>refurbishment ("relining") by 2030</u>, according to International Renewable Energy Agency. The question is ... what comes next?
- <u>Investors must choose</u> between refurbishing existing furnaces or switching to EAFs.
- Factors that determine to turn steel into the decade of green steel:
 - <u>Penalties for CO₂</u>: New ETS, CBAM
 - Renewable energy availability and price
 - Low-carbon hydrogen availability
 - Raw material quality, availability and price
 - Location (feasibility and skilled people)

GLOBAL STEELMAKING CAPACITY IS AGING

Coal-based steelmaking facilities typically require major refurbishment ("relining") after 15-20 years. This chart of global steelmaking capacity built in the last 25 years, by age in 2022, shows many will soon reach this age.* Rather than continue with business as usual, investors have an opportunity to switch to more sustainable green steel technology.

Source: BCG Plantfacts, Primetals Technologies *Data refers to iron from blast furnaces or direct reduction

THREE PHASES TO GREEN STEEL

THE SUSTAINABLE METALS REVOLUTION

THE OPTIMIZATION PHASE

Readily available solutions for sustained impact

ACHIEVING GREEN STEEL

The new standard of production

THE TRANSITION PHASE

Redefining metals production

The pathways to achieve net-zero in the sector

Electrification of production

- Expansion to clean, renewable energy to enable sustainable production processes
- Growing number of electric furnaces
- Produce the green hydrogen required to replace carbon-based reductants
- Direct electrolysis of steel, still in its infancy

Carbon Direct Avoidance (CDA)

- Stop the common practice of fossil-based reduction and move to hydrogen-based reduction
- Scaling-up and establishing a hydrogen eco-system

Carbon Capture Usage & Storage (CCUS)

- CCUS for long life-time assets in upstream ironmaking facilities in e.g., India, China
- Mitsubishi Heavy Industry's KM CDR amine scrubber-based capturing system: store or use
- LanzaTech Carbon Smart technology to lock-in carbon from industrial waste gasses

Challenge

The Scale for the Transition is Massive There is no technological silver bullet yet, but pathways are set

Steel production [mtpy]

Europe is most active in the industry transition based on DRI, EAF and Smelter. In total 37 DRI plants, 63 EAF and 6 Smelter are announced.

Announced Projects till 2030

Strong growth of DR plants are expected for the next 30-50 years

Number of DR Plants operating and planned

(Shaft Technology)

DRI Production Forecast

(mio ton DRI)

Source: iima - International Iron Metallics Association, PT

Feedstock

Scrap Availability and it's Impact for De-Carbonization

The Feedstock Playground

The iron quality determines the process route

Fe content of iron ore world production – 2021

Source: National Minerals Information Center USA, Primetals

Restricted © Primetals Technologies 2021-2023. All rights reserved.

Current Iron Ore Supply by Grade

Supply of DR Grade Ores is limited, accounting only for 4% of current seaborne grades

Seaborne IO supply by average Fe% (Mt) (Total 1.6Bt@2021)

*An indication of the grade range in which high-grade ore can be produced by pulverizing powdered ore through additional investment.

(Source : Woodmac and MC)

Restricted © Primetals Technologies 2021-2023. All rights reserved.

Roadblock Energy

Energy cost is the main driver for electrification and a hydrogen eco system

Energy cost 12/2021 in US\$/kWh

Source: GlobalPetrolPrices.com, BGR - Federal Institute for Geosciences and Natural Resources, IEA, Primetals

El. Energy Prices in US \$/kWh (Dec. 2021)

Energy cost is the main driver for electrification and a hydrogen eco system

Hydrogen Market Space after 2030

Hydrogen cost from renewable energy long term

Source: Frost & Sullivan

Hydrogen Usage

2030 EU pro forma configuration H₂ cost scenarios

The BF/EAF configuration with a 40% hot metal charge is the lowest cost configuration; EAF operations with high percentages of green DRI have higher costs at 2/t H₂ and are extremely uncompetitive at 5/t.

The hydrogen price is assumed to be either a fully-loaded (with capital return) production cost or a purchased price based on a supply contract; assumes 0 free allowances although they will not be fully phased out until 2034; the configuration D with 100% scrap will not be able to produce the same high quality flat roll steels as the others; -included for illustrative purposes

Source: WSD analysis

11

WORLD

STEEL DYNAMICS.

WSD

Process Routes for Transitioning to Net-Zero

*MIDREX, HyREX and HYFOR are registered trademarks of Midrex Corporation, Posco and Primetals Technologies respectively

Process Routes for Transitioning to Net-Zero

High-grade ores: Electric arc furnaces (EAF)

Low-grade ores: "Smelter" for DRI melting and final reduction

Restricted © Primetals Technologies 2021-2023. All rights reserved.

HYFOR Pilot Plant

- No Pelletizing required Fines Feed (any type of ore)
- Extremely high Yield (Low Temperature / Pressure Operation)
- Feed: ~ 1 t Iron Ore/Campaign
- Product: ~ 0.6 t DRI Fines/Campaign
- Hydrogen Supply by Truck
- CE certified for high Temperature and Over-Pressure Operation with 100 % H₂
- Fully Equipped with State-of-the-Art Automation System

Flowsheet Hy4Smelt

3D Model Hy4Smelt Project

2.5 MTPA Plant → 2x90 MW Smelter

21

Break-Through Innovations HYFOR & Smelter for low-grade DRI processing

Protectionism for local steel

Trade flows & Green Steel pace are impacted by:

- Raw material supply chain <u>(scrap protectionism)</u> <u>Backwards integration of scrap processors</u> (i.e. Arcellor Mittal, SDI)
- <u>Scrap availability and quality</u> (crafted scrap)
- <u>DR-grade ores become an undersupply</u> DRPs will have to use lower ore grade feedstock plus Smelter
- Cheap <u>energy might drive a decoupling of iron- and</u> <u>steelmaking</u> (MENA, Australia, US or Brazil)
- <u>Green metallics will become an undersupply</u> (high premium of 300-500 \$ per ton after 2025 expected), but regionally different – import into EU, Japan, Korea?
- New steel players & business models become visible
 - Salzgitter Orsted (circularity/synergy)
 - H2GS Automotive sector
 - GravitHy (VALE, cross-industry approach)

Source: partly from McKinsey & Company: The resilience of steel

Decarbonization Highlights (announced or in execution)

Hy4Smelt, Austria

- Strategic Partners
- HYFOR & Smelter
- 1st continuous industrial prototype green metal plant based on 100% green H2
- Start-up 2026
- 95% CO₂ reduction

SALCOS, Germany

- Steelmaker investment
- Transformation of an integrated 6 mtpy steel plant to an H₂-DRI- EAF
- 1.7 bn€ investment to produce 1.9 mtpy green steel
- Start-up 2025
- 95% CO₂ reduction

any GravitHy, France, Finland

- Strategic investors
- Planning to build, own and operate its first green iron and
 - steel plant in France
- 2.2 bn€ investment to produce 2 mtpy green DRI
- Start-up 2027
- 95% CO₂ reduction

CCS, AM Gent Belgium

- KM CDR aminebased CCS pilot plant
- De-risk CCS application at BF, later at Reheating Furnace and DRP
- Data acquisition and scale-up

HyREX, POSCO, Korea

- Strategic
 Partnership
- Fluidized Bed DRP
 incl. Smelter
- Demonstrator plant 40 TPH, 300.000 TPA
- Start-up 2026
- 90% CO₂ reduction

Steelanol, Belgium

- Stratecic investment
- LanzaTechs uniqu biofermentation smart carbon technology
- 100.000 m³/h BF waste gas feed stock into 80.000 m³ per year bio-ethanol

Active Power Feeder, Germany

- Grid friendly power supply solution
- Connects EAF to power grid on MV MCC basis highest power quality
- Industrial Prototype at50 t EAF at BGH Edelstahl

23

LanzaTech ArcelorMittal

Dr. Alexander Fleischanderl SVP, Global Head of Green Steel Global Head of Innovation & Information Technology

alexander.fleischanderl@primetals.com

Primetals Technologies Austria GmbH Turmstrasse 44 4031 Linz, Austria

THANK YOU

Restricted © Primetals Technologies 2021-2023. All rights reserved.