Practice of HBIS HYMEX demonstration project

Dr. Menglong Li

HBIS Group Sustainable Development Research Center

01 Low-carbon strategy of HBIS Group

HBIS Group: Being the most competitive steel enterprise

Systematic green and low-carbon development strategy

- From comprehensive environmental governance of factory areas and creation of the world's cleanest factory, to adjustment of plants location,
- from ultra-low emission transformation and the first release of low-carbon development action plans, to the formation of the "6+2" low-carbon development technology roadmap,
- from the completion of the HYMEX project to the release of the "6+6+5" low-carbon emission product development plan,
- a systematic green and low-carbon strategy of energy conservation, pollution abatement, carbon reduction, circulation, and coordination has been formed

Phase I: 2008 – 2015

The path of clean production

 Phase II: 2016 – 2020

 The path of green development

 Phase III: 2021 - present

 The path of low-carbon development

Focus on three major innovations, implement the "6+2" low-carbon roadmap

The "6+2" low-carbon technical roadmap

>>> Six technical paths

>> Two carbon platforms

02 The HYMEX project of HBIS • COG zero-reforming based DRI-EAF

Challenges for China steel industry to develop DRI - EAF processes

- Currently, about 90% of the steel in China is produced by BF-BOF processes.
- Lack of scrap steel resources in China.
- The DRI EAF process is an optional path, but the lack of gas resources (natural gas) and higher cost are limiting factors in China.
- However, nearly 190 billion cubic meters of coke oven gas (COG) are produced each year.
- COG contains over 60% H_2 , which makes it a good choice for being used as reducing gas.

Typical composition of COG

H_2	CO	CO ₂	CH ₄	N_2	$C_{2}H_{4}+C_{2}H_{6}$	rest
~62%	~7%	~2%	~20%	~5%	~2.5%	trace

Construction of the HYMEX project

- Making full use of the rich COG resources of China steel industry, HBIS built the world's first COG zero-reforming technology based DRI project, located in Xuanhua, Hebei, China.
- A CONSTEEL EAF steelmaking line has been constructed simultaneously.

IHBIS

Main facilities

- DR shaft furnace ironmaking facilities
- Gas process facilities
- Auxiliary facilities

- Charging
- Reactor
- Cooling
- Discharging

Technical principles

- •COG contains over 60% H_2 , after selfreforming, the H_2 : CO can reach 8:1.
- •The DR process using COG as the gas source mainly includes two routes, i.e. solid flow and gas flow, namely the pellet-DRI transportation and processing system, and the COG supply-tail gas recovery processing system.

$CH_4(g)+H_2O(g)\rightarrow CO(g)+3H_2(g)$
$CH_4(g)+CO_2(g)\rightarrow 2CO(g)+2H_2(g)$
$Fe_2O_3(s)+3H_2(g)\rightarrow 2Fe(s)+3H_2O(g)$
$Fe_2O_3(s)+3CO(g) \rightarrow 2Fe(s)+3CO_2(g)$
$3Fe(s)+CH_4(g)\rightarrow Fe_3C(s)+2H_2(g)$

	Indicator	Typical value		
	TFe	~90%		
	MFe	~85%		
	Metallization ratio	≥94%		
	С	2.5-4.5%		
	S	≤0.004%		
	Volume density	1600 ~ 1900kg/m ³		
	Apparent density	3.4 ~ 3.6g/cm ³		

- CH₄ reacts with the reduced metal iron in the shaft furnace to form cementite, achieving carburization of DRI and generating H₂. Carbon-containing DRI is also beneficial for EAF smelting.
- Good for the slag forming in the early stage of EAF smelting, to promote De-P.
- DRI is pure, suitable for high quality steel production

Carbon emission reduction

- Organizational Level Carbon Emission Analysis
- worldsteel CO₂ Data Collection Methodology
- the carbon emission intensity per ton of crude steel was reduced by 65% to 70%.

The processes before (in black) and after (in green) transition

- LCA Based Carbon Footprint Assessment
- worldsteel Life Cycle Inventory Methodology
- it was estimated that the carbon footprint of the slab using COG DRI could be between 0.50 tCO₂/t and 0.84 tCO₂/t. When green hydrogen is available, it could be reduced to as low as 0.10 tCO₂/t.

High purity DRI is a good raw material for the production of high-quality steel, e.g. automotive sheet.

Future of HYMEX

- H₂: Grey. Blue. Green.
- DRI-EAF based near zero carbon emission technology and products

Thanks!

河钢集团有限公司 HBIS Group Co., Ltd. 中国河北省石家庄市体育南大街385号 050023 No. 385 Tiyu South Street, Shijiazhuang, Hebei, China,050023 www.hbisco.com