Green Tomorrow, with POSCO

Update on the development of POSCO's hydrogen-based ironmaking process, HyREX

Low-Carbon Iron and Steel Making R&D Center PosLAB, POSCO

Shin, Myoung Gyun

Transition to Carbon Neutrality by 2050

POSCO established the target of CO₂ reduction 30% by 2035, 100% by 2050

POSCO Hydrogen Ironmaking - HyREX

POSCO Hydrogen Ironmaking - HyREX

Fast development with own technologies

FBR Redesign for Hydrogen Use : Overall

✓ Revision of reactor design criteria

✓ Adjustment on fluidizing condition

✓ Re-design of multi-staged fluidized beds

- ✓ Target reduction degree
- \checkmark Specific gas consumption
- ✓ Temperature profile
- ✓ Residence time

Countermeasures for high reduction degree

- ✓ Raw material control
- ✓ Anti-sticking & plating measure

✓ Process and plant engineering

- ✓ Heating up of hydrogen
- ✓ Material selection under hydrogen condition
- ✓ Explosion-proof design

FBR Redesign for Hydrogen Use : Fluidization

Characteristics of H₂ as fluidizing gas

 \bigcirc Lower density and viscosity under hydrogen condition

	FINEX gas	HyREX gas	
H ₂ [%]	15~20	70~80	
Density [kg/m ³]	1.55	0.62 (40%)	
Viscosity [Pa-s]	4.22x10 ⁻⁵	3.51x10⁻⁵ (83%)	
x. x x.			

 $\bigcirc\,$ Requires 40% higher velocity compared to that of FINEX

✓ Good fluidization quality confirmed in Sim. & Exp.

Reduction kinetics of H₂ in fluidized bed

 Using lab-scale fluidized bed, kinetics of hydrogen reduction analyzed

\bigcirc Visualization of fluidized bed using CFD simulation

- ✓ Enables to determine reactor size & residence time
- Prediction of reduction behavior under various operation conditions
- $\checkmark~$ Demo plant CFD visualization under progress

FBR Redesign for Hydrogen Use : Reduction

Experimental Facilities

\bigcirc Experimental fluidized bed in various scale

[Lab. Scale Facility]

[Bench Scale Facility]

	Lab-scale	Bench scale
Bed dia.[mm]	50	300
Solid charge [kg]	1 (PSD 1~2mm)	50 (PSD <8mm)
Gas species	H ₂ , H ₂ O, CO, CO ₂ , N ₂	H ₂ , CO, CO ₂ , N ₂
Temperature [°C]	< 1,000	< 950
Pressure [bar.g]	~ 4	1.8

Fluidized bed reduction test

- \bigcirc Investigation on H₂ reduction behavior under various fluidized bed conditions
 - ✓ Ore blend, gas temperature and Gas Oxidation Degree (GOD)

FBR Redesign for Hydrogen Use : Sticking

Sticking behavior and de-fluidization

\bigcirc No whisker formation and less sticking

[DRI CO reduction]

[H₂ reduced DRI]

○ Effect of ore type on the sticking & fluidization behavior

Evaluation of flowability of H2-DRI

\bigcirc Investigation on flowability of DRI with high RD

✓ Evaluation of flowability using standard apparatus

Small scale rheometer that can measure flowability in high temp.

- DRI : < 50g
- Temp. : ~ 600°C (DRI storage temp.)
- ✓ DRI reduced by H₂ is found to have **better flowability** compared to that of DRI reduced by CO

FBR Redesign for Hydrogen Use : Hydrogen Heating

- Industrial-scale readily available
- Good for low T application
- Complicated structure

- Good for high T application
- H₂O in the heated gas

- Easy temperature control by adjusting power consumption
- No available industrial-scale

- International R&D collaboration project funded by Korean government \checkmark
- Construction completed for direct & electrical heating facility (50~100 Nm³/h, 50~100 kW), Experiments underway \checkmark
- Hybrid heating method may be applied considering investment cost and thermal efficiency \checkmark

FBR Redesign for Hydrogen Use : H₂ Recycling

 \checkmark Gas utilization is limited by temperature, moreover H₂ reduction is endothermic reaction

 \checkmark In order to maximize H₂ gas utilization, off-gas recycling is mandatory with gas cleaning system

FBR Redesign for Hydrogen Use : Process Design

- Heat & mass balance for every reactor units and streams
- · Gas heating condition for target gas temperature and quality
- Gas mixing and cleaning condition for target purity
- Flux and carbon usage for target product quality

PIPOP*

*Python-based Ironmaking Process design & Optimization Program

- Python and Pyomo based ironmaking process modeling and optimization program developed by POSCO for HyREX & FINEX process
- Convenient for iterative calculations for complex
 processes
- ✓ Can solve large-scale nonlinear optimization problem within a few seconds
- ✓ Various application available!
 - Optimization of H₂ & Energy consumption
- Simulation of various **raw material** usage
- Evaluation of different process configurations

ESF for H₂ DRI Melting : Major Features

✓ Design concept for H₂ DRI melting in ESF

✓ Based on SNNC ESF*, Similar but different design for H₂ DRI smelting

* SNNC: Fe-Ni plant @ Gwangyang Works

SESF structural design

- ✓ Robust structure for long-term operation
- ✓ Feeding equipment for briquette or powder of H_2 DRI
- \checkmark Cooling panels and erosion resistant refractories
- ✓ Optimal electrode control system
- ✓ Off-gas system for gas recycle

SESF operational design

- \checkmark Brush arc operation for rapid melting
- \checkmark Stable control of temperature and composition
- ✓ Monitoring systems for automatic operation
- \checkmark Slag chemistry control for recycling

ESF for H₂ DRI Melting : Large Lab-scale Test

ESF for H₂ DRI Melting : ESF Simulator

Phase 1: Fe-Ni Process(Completed)

\bigcirc The actual operation data of SNNC

- Inputs/Outputs material and energy balance etc.

\bigcirc Thermodynamics Analysis

- Chemical reaction, mass and energy balance etc.

\bigcirc Computational Fluid Dynamics Analysis

- Temperature, Flowage etc.

Phase 2: HyREX Process(Ongoing)

○ ESF Simulator predicts the temperature, mass and composition of hot metal, slag, and gas

ESF for H₂ DRI Melting : Bench-scale Facility

Specification

 \bigcirc Capacity : 1 ton/hr

○ Furnace : Round Type, 2.8m ID, Air tight, Moving furnace car

 \bigcirc Transformer : 2.5 MVA, 3Phase AC Type, Brush & Immersed arc mode

 \bigcirc Electrode : 12 inch (305mm), PCD 1.2 m

 \bigcirc Tapping machine & mud gun, 1 hot metal & 1 Slag holes, 4~6 Taps/day

Schedule

○ Conceptual and basic design (~'23.1)

○ Detailed design: Mechanical and electrical parts (~'23.7)

○ Civil works and concrete foundation ('23.7~'23.8)

○ Manufacturing and installation ('23.9~12)

○ Hot test (~'24.1)

HyREX Demo Plant Engineering

Bench Scale Test

FBR 50 kg/batch

ESF 1.0 ton/hr

Simulator

Know-How

No.2 FINEX® (1.5 MTPA)

No.3 FINEX® (2.0 MTPA)

Demonstration Plant

HyREX Demo Plant Engineering

HyREX Demo Plant Engineering

Roadmap of HyREX Development

Demonstration by 2030, hereafter Stepwise Replacement of BF with HyREX

HyREX R&D Partnership

Global Cooperation Hub for the HyREX development and commercialization

[Partnership Status]

[First Newsletter ('23.7)]

[Website (<u>https://www.hyrex.co.kr</u>)]

The R&D of HyREX is under progress with the physical experiments and numerical modeling combined with the actual operational experience from FINEX and SNNC Fe-Ni smelting plant. Several achievements are acquired in the respects of how to optimize the HyREX process parameters and integrate into the process engineering.

The pre-engineering of HyREX demonstration plant has been performed, and the basic data for EPC have been secured. The engineering work was initiated in earnest for plant building.

POSCO intends to develop the HyREX process as a reliable, universal, and globally available decarbonization solution for the steel industry. In this respect, POSCO is operating "HyREX R&D Partnership" as the technology exchange channels, information sharing of HyREX development status, and future cooperation.

