

Process Modelling Study on Decarbonization of Steel Production by Integrating High-Temperature Electrolysis

Dr. Romuald Coupan, Genvia Technology Project Manager

Omar Navarro, SLB Steel Industry Director

5 – 7 December 2023, Abu Dhabi (UAE)

The road to a sustainable steel industry

8% of energy related CO₂ emissions

Steel makers are committed to decarbonize Technology and innovation is essential

Genvia

Public private partnership

Company

Technology

High efficiency solid oxide electrolyzer

Applications

Industrial use cases where excess process heat is available

Is Genvia Solid Oxide technology suited to decarbonize steel?

SLB Process modelling capabilities are the answer

01

Build process models of existing industrial plants

<u>02</u>

Integrate Solid Oxide Electrolyzer with heat recovery and hydrogen delivery unit

03

Assessment of multiple hydrogen applications as fuel, as reactant, as reducing agent

Process Modeling of Decarbonized Steel Plant

Genvia SOEL Integration and Use Case Scenarios

\rightarrow H2 as fuel:

- Bypass of HPU
- Raw H2 to Steel process

\rightarrow H2 as reducing agent:

- Required HPU
- Pure H2 for HNX mix

\rightarrow O2 as comburant:

- For oxycombustion
- For H2 oxycombustion

Simulation of Scenarios and Results

N°	Description / Process Coupling	CO ₂ Direct Emission (kg/ton ^{steel})	Heat Recovery at fluegas (kWh/ton ^{steel})	Additional Electricity (kWh/ton ^{steel})	Feed Water (kg/ton ^{steel})	H ₂ at OSBL (kg/ton ^{steel})	O ₂ -rich gas at OSBL (kg/ton ^{steel})
1	Reference Plant	30	-	-	-	-	-
2	Ref. + HRU + SOEL + HPU: H2 for sales	30	-19	81	18	2.0	29
3	Ref. + HRU + SOEL + HPU: H2 as reducing agent	29	-19	81	18	1.9	29
4	Ref. + HRU + SOEL: H2 as fuel	17	-18	76	17	-	28
5	Ref. + HRU + SOEL: H2 as reducing agent & H2 as fuel & O2 as comburant	14	-22	90	21	-	-

HRU: Heat Recovery Unit SOEL: Solid Oxide Electrolyzer HPU: Hydrogen Processing Unit

For use case of 50 t/h plant capacity

Key takeaways

- → H2 use cases investigations by mean of process modeling using SLB's Symmetry processing simulation software supports
- → Validation of new alternatives for steel industry decarbonization

Keys metrics from the study

Learn more about SLB driving energy innovation for a balanced planet.

Learn more about Genvia new alternatives to decarbonize industry.

Dr. Romuald Coupan Genvia Technology Project Manager

Omar Navarro SLB Steel Industry Director

