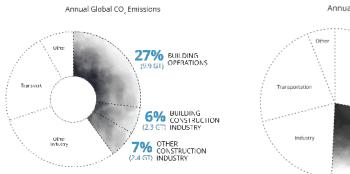
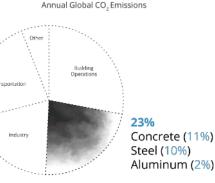
Material and design efficiency


Reducing the environmental footprint in construction

Olivier Vassart CEO Steligence[®]


The impact of the construction to the climate change

Buildings and construction currently account for around 40% of $\rm CO_2$ emissions

© Architecture 2030, All Rights Reserved, Data Source: IEA (2022), Buildings, IEA, Paris

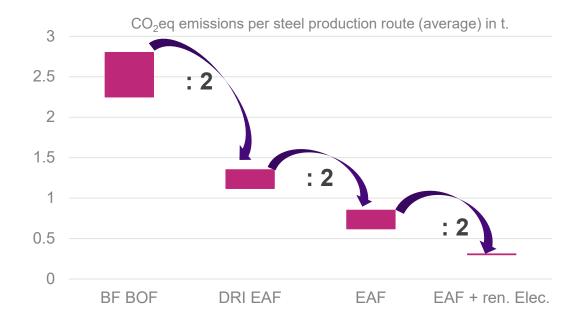
Hullding Construction Industry and Other Construction Industry movement embranes from moveste, steel, and animalitian for buildings and infrastructure respectively.

© Architecture 2030. All Rights Reserved. Data Sources: Global ABC Global Status Report 2018, EIA

Global building floor area is expected to **double** by 2060

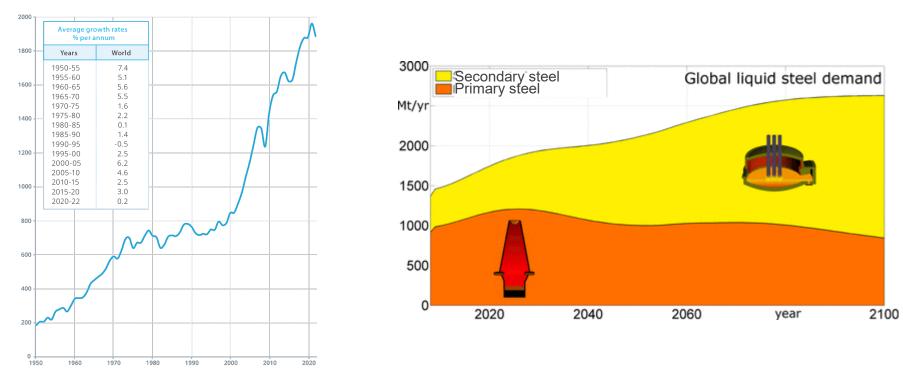
In 2040, 2/3 of the global building stock will be buildings that exist today. Without upgrades, they will still be emitting GHGs.

ArcelorMitta


Several numbers on steel carbon intensity

Each steelmaking route has its own carbon footprint

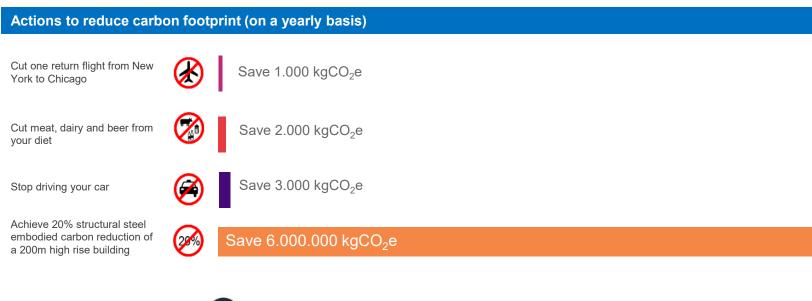
E	BOF	DRI-EAF	SCRAP-BASED EAF	+ renewably produced electricity
Steelmaking route	Blast furnace-basic oxygen furnace (BF-BOF)	Direct reduced iron (DRI) followed by an EAF	Electric arc furnace (EAF)	EAF with renewably produced electricity
Main input	Coal and iron ore	direct reduced iron (sponge iron)	scrap	scrap
Main CO ₂ source	Chemical interaction between carbon (coal) and iron ore: iron reduction produces pig iron which is converted into steel.	Emissions from the use of natural gas as reductant Emissions from purchased electricity	Emissions from purchased electricity	Emissions from purchased electricity
Emissions (incl. rolling mill)	Between 2.25 / 2.8 t. CO ₂ /t	Between 1.12 / 1.35 t. CO ₂ /t	Between <mark>0.62</mark> / 0.85 t. CO ₂ /t	Around 0.3 t. CO ₂ /t


Each steelmaking route has its own carbon footprint

The big picture

million tones, crude steel production

Focus on construction

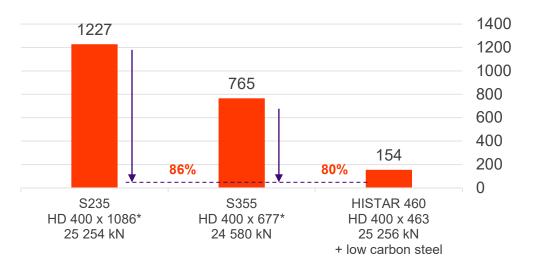

Is the solution only focused decarbonizing material production?

Source : Circularity Gap Reporting Initiative 2022

The impact of the construction to the climate change

The structural engineer has more opportunity to reduce carbon emissions than most other people

Intelligent material selection makes ALL the difference


High rise construction

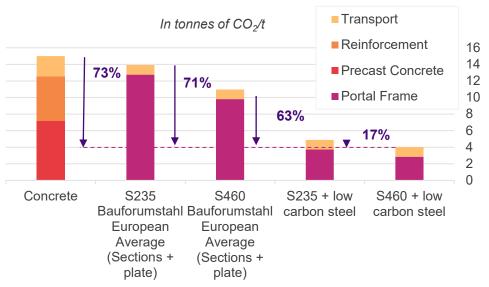
Multi-storey column subject to axial load, buckling length 3.5m

CO₂e saving is 3755 kg for each 3.5m column

In kg CO₂e/**m**

* Central Europe Bauforumstahl EPD | A1-A3 | 1130 kgCO₂/t

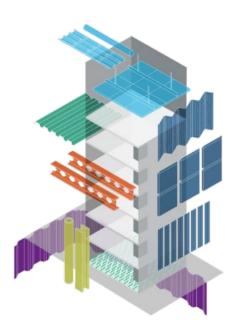
Page 10 13/09/2023


Intelligent material selection makes ALL the difference

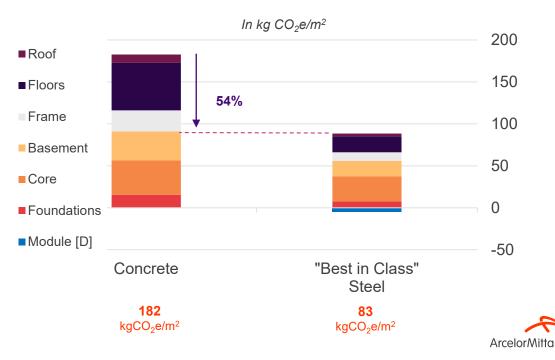
Single-storey industrial building LVS3 * without envelope

CO₂e saving can be as high as 73%

Module A - Concrete vs Steel S235 vs Steel S460


* LVS3 European project

https://op.europa.eu/en/publication-detail/-/publication/cbb3472d-fbbe-11e5-b713-01aa75ed71a1


Intelligent material selection makes ALL the difference

The Steligence® office building

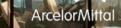
CO₂e saving can be as high as 54%

Cradle to cradle | [A-C] + [D]

Page 12 13/09/2023 Designing a building in the right way can already decrease its carbon content by 35-55%.

Refurbish & Re-use: European Court of Justice in Luxembourg

View of the Main Lobby after re-construction


THE OWNER

Mag

1

ALC: NOT THE

.int

Re-use : Mundo LLN (Belgium)

Re-purpose : project "Petite Maison" (Esch-Belval / Luxembourg)

